Kategorien
Bildbearbeitung Buch und Heft Fotografie Fotokurs Fotos

Buchtipp: Kreativer fotografieren (Almut Adler)

kreativerfotografieren-almutadler-coverDie erste Buchbesprechung unter dem neuen Menüpunkt Buch und Heft befasst sich mit dem Buch Kreativer fotografieren von Almut Adler, erschienen 2012 im humboldt Verlag und „gedruckt auf Papier aus nachhaltiger Forstwirtschaft“. Auf etwa 240 meist farbigen Seiten gibt es eine Menge Interessantes zu entdecken.

Der obige Link zur Verlagsseite des Buches führt auch zu einer Leseprobe als Pdf, in der man das komplette Inhaltsverzeichnis und die ersten Abschnitte des Themenschwerpunktes „Technik und Kreativität“ nachlesen kann (bis Seite 26).

Kategorien
Fotografie Fotokurs Kleine Planeten Kugelpanoramen Zubehör

Panoramakopf aus Fertigteilen

Wer Panoramen aus Einzelbildern zusammensetzen möchte, die auch im näheren Bereich noch passgenau sind, kommt nicht umhin, sich um einen sogenannten Panoramakopf bzw. Nodalpunktadapter Gedanken zu machen. Damit ist eine Vorrichtung gemeint, die die Kamera so auf dem Stativ montiert, dass bei den Schwenks zwischen den Einzelfotos keine Verschiebung von Vorder- und Hintergrund entsteht. Die Kamera dreht sich also im „optischen Zentrum“ der Linse, es kommt bei korrekter Justage des Nodalpunktadapters zu keinen Parallaxenfehlern, so dass sich die Einzelaufnahmen später sauber zusammensetzen lassen.

Wenn man viel Geld in die Hand nimmt, bekommt man solche Panoramaköpfe fertig zu kaufen. Eine Alternative sind auch speziell an ein bestimmtes Objektiv angepasste Ringe, die als Stativkopf die Kamera beim Drehen im Nodalpunkt halten. Dies bietet sich vor allem dann an, wenn man ein Fischaugen-Objektiv verwendet, das annähernd 180° Bildwinkel aufzeichnet, so dass man auch für ein rundum geschlossenes Panorama nicht mehrere Reihen übereinander aufnehmen muss.

Wem solche Fertiglösungen zu teuer sind, dem bleibt auch die Möglichkeit, sich einen Nodalpunktadapter selbst zu bauen. Es gibt einige Bauanleitungen im Internet, an denen man sich orientieren kann. So bekommt man aus Baumarktteilen etc. einen funktionerenden Panoramakopf für wenig Geld.

Etwas Bastelgeschick, Werkzeug und ein geeigneter Arbeitsplatz sind jedoch nötig. Daher bin ich einen dritten Weg gegangen: Ein Panoramakopf aus den üblichen Standardteilen, die man als langjähriger Hobbyfotograf vielleicht ohnehin in diversen Schubladen und Fototaschen hat.

Einzeiliger Panoramakopf (für zylindrische Panoramen)

Nodalpunktadapter für zylindrische PanoramenMein erster Konstruktionsversuch ist hier zu sehen. Auf dem Stativ sitzt ein alter Video-Schwenkkopf. Der war bei meinem gebraucht erstandenen Berlebach-Holzstativ dabei und lag bisher nur in der Schublade. Hier jedoch kann er sich nützlich machen, da er eine Gradskala und einen relativ spielfreien Schwenkmechanismus hat. Leider hat er keine Arretierung der Waagerechten, aber mit einer kleinen Wasserwaage kann man den Schwenkgriff in der richtigen Position festziehen und braucht sich darum später nicht mehr sorgen.

Auf dem Videoneiger sitzen zwei Makroschlitten, die es mal billig bei Pearl gab. Siehe Artikel Einstellschlitten sehr günstig, wo ich die Montage als Kreuzschlitten bereits gezeigt habe.

Auf den beiden Einstellschlitten sitzt der Manfrotto 3D Junior Kopf 056, den man neu für ca. 35-40 Euro erhalten kann. Da er eigentlich für die direkte Montage auf dem Stativ gedacht ist, hat er ein 3/8-Zoll-Innengewinde, während die Einstellschlitten 1/4-Zoll-Außengewinde haben. Daher benötigt man noch eine Reduzierhülse (am besten gleich ein 3er- oder 5er-Set bestellen, denn von den Dingern hat man immer eins zu wenig…).

Wie man sieht, erlaubt diese Konstruktion auch das Ansetzen einer geneigten Kamera. Man kann daher auch mehrzeilige Panoramen aufnehmen. Allerdings entsteht dabei in der Vertikalen ein deutlicher Parallaxenfehler. Zwar dreht sich die Kamera (bei korrekter Justage der Einstellschlitten) im parallaxenfreien optischen Zentrum des Objektivs, aber ein vertikaler Schwenk erfolgt nicht in diesem Drehpunkt, sondern in der Stativbuchse; also viel zu weit hinten. Auch verstellt man dabei (geringfügig) die Lage des Objektivzentrums über dem Drehpunkt. Die Konstruktion ist daher für mehrzeilige Panorama-Shootings eher ein Notbehelf als ein richtiger Panoramakopf.

Mit dieser Konstruktion habe ich die Norderney-Panoramen aufgenommen, die ich mit dem Polarkoordinaten-Filter zu „kleinen Planeten“ zusammengedreht habe, beispielsweise Strandkörbe und Heimatdorf. Auch erste Versuche von sphärischen Panoramen habe ich damit gemacht. Allerdings mit einigen Problemen beim Stitching, vor allem im Nahbereich.

Mehrzeiliger Panoramakopf (für sphärische Panoramen)

Daher habe ich die Konstruktion weiterentwickelt, wie die folgenden 3 Bilder zeigen:

Panoramakopf Panoramakopf Panoramakopf

Wenn man die Bilder in groß betrachtet, sieht man deutlich, wo der Unterschied ist: Über dem Schwenkkopf sitzt nach wie vor einer der beiden Pearl-Einstellschlitten. Doch der zweite Einstellschlitten steht senkrecht – gehalten durch den Manfrotto-Juniorkopf. Dadurch, dass der Schlitten senkrecht auf der Basis des Kopfes steht, ist diese Konstruktion erstaunlich stabil.

Der senkrechte Schlitten muss nicht genau justiert werden, sondern er wird mit den Schrauben des 3D-Juniorkopfes so festgezogen, dass er senkrecht fest aufsteht. Die Schraube an seinem oberen Ende dient der Verstellung zwischen den einzelnen Panorama-Zeilen. Um die Rundumsicht annähernd vollständig zu erfassen, benötigt mein 15mm-Objektiv (an einer Kamera mit APS-C-Sensorformat) drei Zeilen zu je 12 Aufnahmen (hinzu kommen noch ein paar Bilder zum Einpassen des Zenit und des Fußbodens, aber das ist hier nicht das Thema). Die Verstellung zwischen den drei Zeilen des Panoramas macht man am besten mit einem Schraubendreher, da sich die Schraube von Hand nicht ausreichend fest ziehen lässt, um ein versehentliches Verstellen der Kamera zu vermeiden.

Wie man sieht, dreht sich die Kamera bei der Vertikalverstellung nicht im Stativgewinde, sondern im Gewinde einer dritten Einstellschiene. Es ist der untere Teil des Traumflieger-Kreuzschlittens, den ich bereits in der Rubrik Zubehör vorgestellt hatte. Dieser Schlitten ist so justiert, dass die Achse der Stativbuchse genau durch den Nodalpunkt des Objektivs geht. So können die vertikalen Schwenks im Nodalpunkt durchgeführt werden.

Soweit also meine derzeitige Konstruktion. Natürlich kommt sie bei Weitem nicht an einen guten kommerziellen ’sphärischen‘ Panoramakopf heran, wie beispielsweise dem Nodal Ninja 5, meinem momentanen Kopf der Begierde. :-) Einige Nachteile der Selbstbaukonstruktion sind:

  • Verwendung Stativschraube/Schraubendreher für Zeilenverstellung.
  • Streuchlichtblende kann nicht angesetzt werden.
  • Dritte Schiene passt nur bei meinem 15-85mm-Objektiv (und bei anderen, deren Dicke genau bis zum Kameraboden geht, so dass der Zoomring auf der Schiene aufliegt). Ist das Objektiv dünner, hält die Schiene nicht wirklich fest, da sie wenig Auflage am Kameraboden hat. Ist es dicker, passt es nicht.
    (Vorteil ist allerdings, dass die Schiene das Objektiv in Brennweitenstellung 15mm festhält und sich diese daher nicht so leicht versehentlich verstellt.)
  • Schwenk senkrecht nach oben nicht möglich (vertikale Schiene nicht lang genug).
  • Recht großes Packmaß und Gewicht. Das Teil ist sperrig. Ein Nodal Ninja hingegen lässt sich vergleichsweise klein zusammenlegen.

Wie man sieht, ist es ein echter Kompromiss, aber für erste Erfahrungen ganz gut und somit empfehlenswert als Anregung für eigene Experimente mit eventuell vorhandenem Zubehör.

Bis auf die Reduzierhülsen habe ich keine Teile zukaufen müssen. Sollte ich aber intensiver in die Panoramafotografie einsteigen und vielleicht sogar Auftragsarbeiten annehmen, dann ist wohl ein „richtiger“ Panoramakopf wie z.B. der Nodal Ninja 5 fällig.

Mit diesem ‚mehrzeiligen‘ Nodalpunktadapter aus Fertigteilen habe ich beispielsweise das Elberfeld-Panorama aufgenommen, sowie noch einige weitere sphärische Panoramen (samt daraus erzeugten stereographischen „kleinen Planeten“), die ich bei Gelegenheit zeigen werde.

Kategorien
3D-Fotografie Fotografie Fotokurs Fotos

3D-Konzertfotos (Simon Wahl)

Simon Wahl im „Kantorka“ Hamburg

Während des Kurzurlaubs in Hamburg hatten wir die Gelegenheit, ein Konzert des jungen Gitarristen Simon Wahl zu besuchen, den wir auch schon mehrfach im Rheinland gehört hatten. Er spielt ziemlich genial „Acoustic Fingerstyle Guitar“ und entlockt der Gitarre erstaunliche Klänge.

Ich habe einige Konzertfotos gemacht; davon 7 Stück mit einem uralten Strahlenteiler von Pentax. Dieser wird in den Filterring meines 28mm Objektivs geschraubt (dank Cropfaktor entspricht das etwa 45mm; der Strahlenteiler ist für 50mm Kleinbild-Brennweite gebaut), und er nimmt dann pro Querformat-Foto zwei hochformatige Stereo-Halbbilder auf, die man mit Stereo Photo Maker zusammenrechnen kann. Von den 18 Megapixeln der 60D bleiben dann nach Justage und Beschnitt etwa 5-6 Megapixel pro Halbbild übrig – also durchaus ausreichend. Für die Präsentation hier wurden sie dann auf 1000 Pixel Höhe verkleinert, nachgeschärft und mit dem Logo versehen (alles in SPM). Und nun 3D-Brillen auf (rotes Glas nach links, cyan nach rechts) und angeschaut:

Da das Licht sehr schummrig war und trotz offener Blende (meist f/2,8) sehr hohe ISO-Werte nötig waren, wäre die Fujifilm Real 3D W1 mit dieser Situation überfordert gewesen. Wie man sieht, bewegt man sich auch mit der 60D im Grenzbereich; die Fotos sind doch recht „experimentell“. Ich hoffe, die Bilder gefallen Euch trotzdem.

Kategorien
Aufbaukurs Fotografie Fotokurs

Aufbaukurs, Lektion 2

Darf’s ein bisschen mehr sein: 6 Millionen Megapixel

Zur Einleitung gibts diesmal keinen Spargel, sondern eine wahre Geschichte: Am Silvesterabend 2006 waren wir indisch essen (lecker…). Im Restaurant kamen wir mit einem netten Jungen vom Nachbartisch ins Gespräch, weil er die Gruppe dort mit einer Digitalkamera fotografierte. Wir erfuhren, dass er Robin heißt, 9 Jahre alt ist, und seine eigene Digitalkamera habe „6 Millionen Megapixel“!

Nun, Robin ist ein cleverer Junge und kennt sich z.B. mit Astronomie sehr gut aus. Aber bei den Megapixeln ist er ein wenig durcheinandergekommen. Macht aber nix, denn das geht selbst Profis in dem Geschäft manchmal noch so, wie ich im übernächsten Abschnitt zeigen werde. Deshalb erkläre ich hier mal für alle die Sache mit den Pixeln und Megapixeln. Und dazu noch das mit den Sensorgrößen.

Kilo- Mega- Gigapixel

Die Umrechnerei mit „Kilo“ gibt es ja in vielen Bereichen des täglichen Lebens. Der Weg zur Arbeit betägt beispielsweise 8 Kilometer. Wer sagt da schon 8000 Meter? Oder die 500 Gramm Mehl werden auch als 1/2 Kilogramm bezeichnet. Soweit, so einfach. Aber mit den Megas und Gigas tun wir uns manchmal ein bisschen schwerer. Man braucht sie halt nicht so oft. Kaum ein Mensch sagt beispielsweise, die Fahrt in den Urlaub sei 1 Megameter lang gewesen. Unter „1000 Kilometer“ kann man sich viel leichter was vorstellen (nämlich Kreuzschmerzen, quengelnde Kinder auf dem Rücksitz, horrende Benzinrechnungen, massig tote Fliegen auf der Windschutzscheibe, etc.). :-)

Die Umrechnung von Längen-Einheiten funktioniert genauso wie bei den Pixeln:

  • 1000 Pixel sind 1 Kilopixel.
  • 1000 Kilopixel sind 1 Megapixel oder 1 Million Pixel.
  • Und 1000 Megapixel sind 1 Gigapixel.
  • 1000 Gigapixel ergeben ein Terapixel.

Der Begriff „Kilopixel“ hat sich jedoch nicht durchgesetzt. Statt 300 Kilopixel sagt man lieber 0,3 Megapixel – dies ist z.B. die typische „VGA-Auflösung“ von 640×480 Bildpunkten. Und mit Gigapixeln oder gar Terapixeln braucht man als Digitalfotograf gewöhnlich auch nicht rechnen (wenn man mal von diversen Gigapixel-Panoramen absieht, wie z.B. hier von diesem: www.koeln.de/gigapixel). Wer also nicht gerade solche zusammengesetzten Riesenpanoramen erstellt oder bei Google Earth bzw. Streetview arbeitet, kommt mit Giga- bzw. Terapixeln kaum in Berührung. Für den Hausgebrauch reichen die Megapixel völlig aus.

Doch zurück zu Robins Kamera. Hätte sie wirklich „6 Millionen Megapixel“, dann wären dies ja 6000 Gigapixel bzw. 6 Terapixel. Er meinte jedoch die bei Digitalkameras teilweise noch üblichen 6 Megapixel. Ein Foto mit ca. 3000 mal 2000 Pixeln ist ein 6-Megapixel-Bild. 6 Terapixel wären demnach 3 Millionen mal 2 Millionen Bildpunkte, also 6 Billionen Pixel. Welche Speicherkarte soll so eine Datei nur fassen können?

Auch wenn derzeit meist noch mit möglichst hohen Megapixel-Zahlen geworben wird, setzt sich langsam aber sicher die Erkenntnis durch, dass die Bildpunktezahl nicht das Entscheidende ist. Eine 6 Megapixel-Kamera macht unter Umständen bessere Fotos als eine 10 Megapixel-Kamera. Warum das so ist, erläutere ich später.

Saublöd und saubillig

ZeitungsprospektEine Umkehr des Trends zu immer mehr Megapixeln zeigte sich übrigens im Dezember 2006 in einem Zeitungsprospekt. Dort verkaufte der Ich-bin-doch-nicht-blöd-Markt die rechts abgebildete Kamera mit der traumhaften Auflösung von 6,1 Pixel! :-) Einmal abgesehen davon, dass es Zehntelpixel nicht gibt, hat ein Sensor mit 3 mal 2 Bildpunkten natürlich den Vorteil, dass seeeehr viele Bilder auf die Speicherkarte passen. Dem Fotografen verlangt allerdings die Beschränkung auf 3×2 Pixel einiges an Abstraktionsvermögen ab. Hier mal einige Beispiele von (20fach vergrößert dargestellten) Bildern in der 0,000006-Megapixel-Klasse:

Abendhimmel über dem Schwarzen Meer.

Nacht über dem Roten Meer.

Türme des Kölner Doms vor blauem Himmel.

Unvergrößert sehen die 6-Pixel-Bilder übrigens so aus:

Vielleicht kann Robin sein überschüssiges „Mega-“ an den „Fach“markt verkaufen (vielleicht für 1 Megaeuro). Dann passen die Bilder von Robins Kamera auch wieder auf normale Speicherkarten. Und der besagte Markt wird seine Kameras vermutlich besser verkaufen können, wenn sie statt 6,1 Pixeln dann mit 6,1 Megapixeln beworben werden könnten. Beiden wäre also geholfen… :-)

Filmformate und Sensorgrößen

Um den Zusammenhang zwischen Megapixelzahl und Bildqualität besser einschätzen zu können, ist ein Blick auf die üblichen Sensorgrößen von Digitalkameras ganz hilfreich. Ich habe dazu einmal die folgende Grafik vorbereitet. Das Bild zeigt einige der üblichen Aufnahmeformate von analogen und digitalen Kameras. Ich habe mich bemüht, es etwa in Originalgröße erscheinen zu lassen, aber je nach Monitorgröße und -einstellung kann es natürlich sein, dass es größer oder kleiner erscheint (siehe vorige Lektion). Im Zweifel einfach mal ein ungerahmtes Dia oder ein Lineal vor den Bildschirm halten, dann sieht man, ob die Größen in etwa stimmen.

Vergleich verschiedener Film- und SensorgrößenDie Grafik zeigt deutlich, dass es sehr große Unterschiede in der Film- bzw. Sensorgröße verschiedener Kameras gibt. Ein genauerer Blick lohnt sich:

Größenvergleich, 6x7 MittelformatDie beiden blauen Rechtecke der obigen Grafik zeigen zwei typische Mittelformat-Fotoformate. Die Negative oder Dias haben eine Größe von ca. 70 x 60 mm oder 60 x 60 mm. In der Digitalfotografie spielen sie nur im „unbezahlbaren“ Profi-Bereich eine Rolle, auf die ich hier nicht näher eingehe.

Der Name „Mittelformat“ zeigt schon an, dass es auch noch größere Aufnahmeformate gibt. Und auch das Mittelformat ist – wie man deutlich erkennen kann – wesentlich größer als das Kleinbildformat, das ja gerne als „Vollformat“ bezeichnet wird.

6×7-Mittelformatfotos auf Rollfilm haben gewöhnlich eine belichtete Fläche von 56 mal 68 Millimetern. Dies ergibt mit 3808 mm2 eine 4,4fach größere Fläche als die 864 mm2 des Kleinbildformats, das als nächstes vorgestellt wird.

Größenvergleich, Kleinbildformat 24x36mmIn obiger Grafik orange dargestellt ist das bekannte Kleinbildformat von 36 x 24 mm. In diesem Format werden Dias oder Negative in den üblichen „analogen“ Spiegelreflexkameras auf Kleinbildfilm belichtet. Daher habe ich das Filmmaterial mit Perforation ebenfalls dargestellt, was einen Größenvergleich erleichtert.

Einige digitale Spiegelreflexkameras haben einen Sensor, der ebenfalls (fast) diese Größe aufweist (z.B. Canon EOS 5D). Diese Kameras haben daher keinen Crop-Faktor (bzw. „Crop-Faktor 1“), denn sie geben das Bild so wieder, wie es auch eine analoge Kamera mit gleicher Brennweite tun würde. Weil der Sensor (annähernd) die gleiche Größe wie das Kleinbildformat hat, wird dieser Sensortyp häufig als „Vollformat-Sensor“ bezeichnet.

Größenvergleich, APS-C-FormatGrößenvergleich, APS-C-FormatWeitaus üblicher bei digitalen Spiegelreflexkameras ist das sogenannte APS-C-Format, in obiger Grafik durch die beiden grünen Kästchen dargestellt. Die beiden Schwanenfotos rechts zeigen, dass zwischen dem echten APS-C Filmformat mit seinen 25,1 mal 16,7 mm und dem etwas kleineren, was in DSLRs eingebaut wird, auch noch ein gewisser Unterschied besteht, obwohl sich beides „APS-C-Format“ nennt.

Das kleinere der beiden Bilder zeigt die Sensorgröße der Canon EOS 20D und 30D, deren Sensoren 22,5 x 15 mm groß sind, was genau rechnerisch einem Cropfaktor von 1,6 entspricht. In den Kameras Canon EOS 350D und EOS 400D ist der Sensor mit 22,2 x 14,8 mm geringfügig kleiner, was aber in der Praxis nicht auffällt, denn der Cropfaktor liegt auch bei 1,6 (rechnerisch 1,62). Für meine neue EOS 60D wird er mit 22,3 x 14,9 angegeben (also auch Crop 1,6). Da die Unterschiede nicht bedeutend sind, werden alle diese Sensorgrößen mit Cropfaktor 1,5 oder 1,6 als „APS-C-Formate“ bezeichnet.

Sensoren dieser Größe haben gegenüber dem „Vollformat“ mehrere Vorteile: Sie sind preiswerter herzustellen. Auch haben sie weniger Probleme mit Vignettierung (Ecken des Fotos erscheinen dunkler), womit das Vollformat manchmal seine Probleme hat. Durch den kleineren Bildkreis, den das Objektiv aufzeichnen muss (kleinere Sensordiagonale), werden bei Vollformat-Objektiven die kritischeren Randbereiche sozusagen ausgelassen. Auch lassen sich dadurch preiswertere Objektive herstellen, die nur für den kleineren Bildkreis von Kameras mit APS-C Sensor gerechnet sind. Und außerdem freuen sich Tele-Fotografen, wenn sie ein 300mm-Objektiv kaufen und der Blick durch den Sucher fast wie bei einem 500mm-Objektiv aussieht.

Größenvergleich, Four ThirdsEin Stück kleiner als in APS-C-Digitalkameras ist der Sensor bei digitalen Spiegelreflexkameras des Four-Thirds-Standards (und auch bei der neuen Entwicklung Micro Four Thirds). Four Thirds wurde von Olympus und Kodak entwickelt, aber auch andere Hersteller bauen Kameras mit dieser Sensorgröße und nach diesem Standard, nämlich derzeit Panasonic und Leica.

Die Diagonale des FourThirds-Sensors ist nur halb so groß wie im ‚Vollformat‘. Dieser Sensortyp hat daher einen Crop-Faktor von 2. Dies ist zwar einfacher zu rechnen (ein 14-45mm Zoom entspricht beispielsweise einem Kleinbildformat-Zoom mit Brennweite 28-90mm). Wer jedoch gerne Objekte mittels geringer Schärfentiefe vor unscharfem Hintergrund ‚freistellt‘, wird den Cropfaktor von 2 allerdings eher als Nachteil sehen, weil die geringeren Brennweiten und die kleinere Sensorfläche eine höhere Schärfentiefe mit sich bringen.

Da die Bauweise von FourThird-Kameras keine Rücksichten auf ältere ‚analoge‘ Objektive, Objektivbajonette, etc. nehmen musste, sondern eine Neuentwicklung für Digitalkameras war, hat dieses Format einige Vorteile gegenüber digitalen Spiegelreflexkameras mit größeren Sensoren. Auch die Verwendbarkeit von FourThirds-Objektiven der verschiedenen Hersteller ist natürlich sehr praktisch.

Bei den bisher betrachteten Sensorgrößen von Vollformat über APS-C bis zu FourThirds werden die Objektive mit ihrer jeweiligen echten Brennweite angegeben, und es wird zum Vergleich mit dem Kleinbildformat ggf. mit einem Cropfaktor gerechnet. Bei den beiden kleinsten Sensoren in obenstehender Grafik verhält es sich jedoch anders:

Größenvergleich, Kompaktkamera-SensorGrößenvergleich, Kompaktkamera-SensorDiese winzigen Flächen zeigen typische Sensorgrößen gängiger Kompakt-Digitalkameras. In der obenstehenden Grafik habe ich diese Sensoren pink bzw. rot eingezeichnet. Sie haben gerade mal ca. 4×6 bzw. 5×7 Millimeter Kantenlänge, und dies ist in fast allen Kompaktkameras, Superzoomkameras, Bridgekameras, etc. der Fall – von Handykameras wollen wir hier gar nicht reden.

Dem einfallenden Licht steht durch den winzigen Sensor auch nur ein Bruchteil der lichtempfindlichen Fläche zur Verfügung, die die größeren Sensoren von Spiegelreflexkameras einfangen können. Umso stärker muss das Sensor-Signal verstärkt werden, was zu erhöhtem Bildrauschen führt. Dies wird noch deutlicher, wenn man mal die Flächen berechnet. Die winzigen Sensoren kommen gerade mal auf ca. 38 mm2 bzw. 25 mm2. Verglichen mit den ca. 330 mm2 des APS-C-Formates sind sie also ca. 9 bis 13fach kleiner.

Wie im vorletzten Absatz schon angedeutet, wird bei den kleinen Sensoren von Kompaktkameras nicht mit echter Brennweite und Crop-Faktor gerechnet, sondern man gibt die auf Kleinbildformat umgerechnete Brennweite des Objektivs an.

Beispielsweise klebte auf meiner früheren Immerdabei-Kompaktknipse Ricoh Caplio R5 ein fetter Aufkleber mit großen Ziffern 28-200. Aber ein näherer Blick auf die klein gedruckten Zahlen am Objektiv verrät, dass es sich in Wirklichkeit um eine Brennweite von 4,6-33mm handelt. Wenn man 28 geteilt durch 4,6 (oder 200 durch 33) rechnet, erhält man den ungefähren Cropfaktor von 6. Nur der Bildwinkel entspricht einem 28-200-Zoom im Kleinbildformat. Was hingegen die Schärfentiefe betrifft, verhält es sich ganz wie ein 4,6-33mm-Zoom, was es ja auch ist. Es ist also schon schwierig, damit das Motiv vor einem möglichst unscharfen Hintergrund freizustellen, da man maximal eine Brennweite von 33mm (und Offenblende 4,8) zur Verfügung hat.

Mini-Megapixel

Größenvergleich, APS-C-FormatGrößenvergleich, Kompaktkamera-SensorInzwischen gibt es auch Kompaktkameras mit 8, 10 oder gar 14 Megapixeln. Ähnlich viele Megapixel haben auch die aktuellen ‚bezahlbaren‘ Spiegelreflexkameras mit APS-C-Sensor. Was kann man daraus über die Bildqualität schließen?

Machen wir eine (grob vereinfachte, aber im Prinzip dennoch zutreffende) Rechnung: Der kleine Sensor der Kompaktkamera hat nur 1/9 der Größe des Spiegelreflex-Sensors, aber gleich viele Bildpunkte. Jedes einzelne Kompaktkamera-Pixel hat somit auch nur ca. 1/9 der Größe seines Kollegen in der Spiegelreflexkamera. Es bekommt daher im Vergleich zu seinem großen Vorbild auch nur ca. 1/9 des Lichts ab. Demnach muss das elektrische Signal, dass das Mini-Sensorelement erzeugt, auch ca. 9fach höher verstärkt werden. Dabei verstärkt sich bekanntlich das Bildrauschen mit. Eine neunfache Verstärkung entspricht aber mehr als 3 Blendenstufen. Schon im ‚Grundzustand‘ mit niedriger ISO-Zahl (z.B. ISO 100) muss die Kompaktkamera das Signal in etwa so verstärken, als wäre ISO 800 eingestellt. Das ist der Grund, warum Bilder einer modernen Kompaktkamera mit hoher Megapixelzahl viel stärker rauschen als Bilder einer Spiegelreflexkamera mit gleich viel Megapixeln.

Natürlich versuchen die Hersteller der ‚Minimegapixler‘, dieses Problem mit allerlei elektronischen Tricks zu kaschieren. Aufwändige Rauschunterdrückungsberechnungen sollen das Rauschen schon in der Kamera auf ein Minimum reduzieren. Dabei verschwinden allerdings auch feine Details aus dem Foto, wenn die Rauschunterdrückung zu aggressiv zu Werke geht.

Ein Ausweg aus dem Dilemma wäre ein Verzicht auf einige Megapixel. Für die meisten Anwendungen, bei denen überhaupt Kompaktkameras in Frage kommen, reichen 4 bis 6 Megapixel locker aus. Auch die Optiken der meisten Kompaktkameras sind mit höheren Auflösungen schon an der Grenze ihrer Leistungsfähigkeit. So verwundert es nicht, dass die Tests vieler Fotozeitschriften immer wieder zum Ergebnis kommen, dass mehr Megapixel meist nicht mehr Bildqualität bringen. So heißt es beispielsweise in ColorFoto 1/2007: „Auffällig: die nominelle Pixelauflösung sagt wenig über die tatsächliche Bildqualität aus. Bei der Bildqualität stehen nicht die drei 10-Megapixel-Kameras vorn, sondern zwei […] Modelle mit 6 Megapixeln.“

Vermutlich wird es aber noch einige Zeit dauern, bis die meisten Verbraucher erkannt haben, dass das Megapixel-Wettrüsten vor allem Marketing-Gründe hat. Eine Kamera nur nach ihren Megapixeln zu beurteilen ist etwa ähnlich sinnlos wie z.B. ein Auto nur nach dem Hubraum zu bewerten. Weitere Infos hierzu gibt es auf der sehr interessanten (wenn auch leider nicht weiter aktualisierten) Website www.6mpixel.org.

Kompaktkamera-Rauschvergleich

Ein Vergleich des Bildrauschens von Kompaktkameras zeigt deutlich, dass mehr Megapixel nicht mehr Bildqualität bedeuten. Die obere Bildreihe zeigt 100%-Ausschnitte der 6-Megapixel-Kamera Ricoh Caplio R4 (300×200 Pixel aus einem Bild von 2816×2112 Pixeln), während die untere Reihe 100%-Ausschnitte von der R5 zeigt, die einen 7-Megapixel-Chip hat (3072×2304 Pixel). Links jeweils die ISO-100-Version, rechts war eine Empfindlichkeit von ISO 400 eingestellt:

Obern Caplio R4, unten R5Zwar war dies kein Test unter Laborbedingungen, sondern nur ein privater Vergleich dessen, was die Automatiken dieser beiden Kameras so draufhaben. Aber bezüglich des Rauschens sieht man deutlich, dass die zusätzlichen Pixel der R5 den Nachteil höheren Bildrauschens mit sich bringen. Die R4 war zu diesem Zeitpunkt preiswerter und macht trotzdem die besseren Fotos. Hätte ich die besseren Video-Qualitäten der R5 damals nicht öfters gebraucht, dann wäre ich bei der R4 geblieben. Zumal die R5 auch sonst ein paar kleinere Macken hatte, die bei der R4 noch nicht vorhanden waren. Ein typischer Fall von „Verschlimmbesserung“. Aber was interessiert heute noch die R4 oder R5? Zur Photokina 2008 ist Ricoh bei der R10 angelangt, leider mit 10 Megapixeln. Hätte sie 6 Megapixel, würde ich sie vielleicht kaufen. Leider bekommt man 6-Megapixel-Sensoren inzwischen nur noch in Handys…

Vergleich ISO 100 und 3200Ganz interessant ist auch ein Vergleich der obigen Bilder mit dem Bildrauschen-Vergleich der digitalen Spiegelreflex. Man kann deutlich erkennen, dass die DSLR wegen ihres größeren Sensors selbst bei höheren Empfindlichkeiten wesentlich weniger rauscht. Ihre Ergebnisse selbst bei ISO 1600 können durchaus mithalten bei ISO 400 an allzu megapixeligen Kompaktkameras.

Neben den möglichst rauscharmen Megapixeln (also der Bildgröße) bestimmt noch ein anderer Wert die Qualität eines Digitalfotos bzw. einer Rastergrafik: Die Anzahl der möglichen Farben, auch Farbtiefe genannt. Darum geht es in der folgenden Lektion.

Mittelformat (Rollfilm 6x6) Mittelformat (Rollfilm 6x6) Mittelformat (Rollfilm 6x6)

Mittelformat: Japanischer Garten Bonn auf Rollfilm 6×6

Kategorien
Anfängerkurs Fotografie Fotokurs

Anfängerkurs, Lektion 6

Vorne scharf, hinten unscharf: Die Schärfentiefe

Ähnlich wie sich die (in der vorigen Lektion besprochene) Verwacklung kreativ nutzen lässt, indem Teilbereiche des Bildes scharf und andere verwischt erscheinen, kann man auch die Schärfe kreativ beeinflussen und je nach Situation beispielsweise den Hintergrund verschwommen erscheinen lassen, während das Hauptmotiv scharf erscheint. Möglich wird dies durch möglichst geschickte Beeinflussung der Schärfentiefe.

Als Schärfentiefe wird der Bereich vor und hinter der Scharfstellebene bezeichnet, der auf dem Foto noch als scharf wahrgenommen wird. Das Bildbeispiel links (das manchen Lesern dieser Homepage schon von meiner Rom-Seite bekannt ist) soll dies verdeutlichen: Während die Tauben (einigermaßen) scharf abgebildet sind, liegt der Hintergrund schon nicht mehr im Bereich der Schärfentiefe, sondern ist leicht unscharf. In diesem Falle ist dies so gewollt, um die Tauben plastischer vor dem Hintergrund erscheinen zu lassen. Gleichzeitig soll in diesem Fall der Hintergrund aber noch erkennbar sein, also nicht allzu unscharf. Daher ist es von Vorteil, die Schärfentiefe bewusst steuern zu können.

Wie aus der Definition von Schärfentiefe im vorigen Absatz erkennbar ist, kann man als Fotograf durch Bestimmung der Schärfentiefe nicht nur den Hintergrund in Unschärfe verschwimmen lassen. Das gleiche kann man auch mit dem Vordergrund eines Bildes machen. Ein Beispiel hierfür findet sich bei meinen Abbruzzen-Fotos auf dieser Homepage. Das Foto vom Lago di Bomba zeigt einen verschwommenen Vordergrund. Die unscharf abgebildeten Blätter des Baumes geben dem Blick auf den See einen gewissen Eindruck von Tiefe.

Übrigens: Statt „Schärfentiefe“ sagen manche Leute auch „Tiefenschärfe“, obwohl ich persönlich das unlogisch finde. Denn man sagt ja auch „Wassertiefe“ und nicht „Tiefenwasser“, und in beiden Fällen ist es die Tiefe, die sich ändert, und nicht die Schärfe des Fotomotivs. Mit anderen Worten: Es geht um die ‚Tiefe der Schärfe‘ und nicht um die ‚Schärfe der Tiefe‘. Aber von mir aus können sie auch gerne „Schiefentärfe“ oder „Tärfenschiefe“ sagen. :-) Ich sage jedenfalls „Schärfentiefe“, weil es mir am logischsten erscheint.

Um die Schärfentiefe steuern zu können, ist es wichtig zu verstehen, welche Faktoren einer Aufnahme sie in welcher Weise beeinflussen. In den nächsten Unterabschnitten werden wir uns daher mit dem Einfluss von Blende, Brennweite und Abbildungsmaßstab bzw. Entfernung des Motivs (der Scharfstellebene) beschäftigen. Die Begriffe Blende und Brennweite wurden ja in vorangegangenen Lektionen betrachtet. Wer sich damit noch nicht so sicher ist, kann es sich ja nochmal anschauen.

Schärfentiefe und Blende

Der wichtigste Faktor zum Beeinflussen der Schärfentiefe ist wohl die am Objektiv eingestellte Blende, denn die Blende lässt sich (im Gegensatz zu Brennweite und Motivabstand) ändern, ohne dass dadurch Bildausschnitt bzw. Perspektive verändert werden. Man bekommt also ‚das gleiche Bild‘, nur mit einer veränderten Schärfentiefe, wenn man die Blende verstellt. Die folgenden Fotos zeigen den Effekt der Blende auf die Schärfentiefe. Sie sind mit der EOS 20D und einer Brennweite von 55mm aufgenommen. Zwischen den einzelnen Bildern liegen jeweils 2 Blendenstufen:

Rosen, Blende 5.6, 11 und 22

Wie man eindeutig erkennen kann (insbesondere, wenn man das Bild durch Anklicken vergrößert), nimmt die Schärfentiefe mit kleinerer Blende (also größerer Blendenzahl) deutlich zu. Während bei Blende 5,6 die kleinen Schleierkraut-Blüten im Hintergrund der Rose außerhalb der Schärfentiefe liegen, sind sie bei Blende 22 mit im Schärfebereich.

Eine Verkleinerung der Blende bringt also eine Erhöhung der Schärfentiefe. Leider aber gleichzeitig auch eine Verlängerung der Belichtungszeit. Während das Bild mit der größten Blende (5,6) mit einer Verschlusszeit von ’nur‘ 1/15 Sekunde aufgenommen wurde, verlängert sich diese Verschlusszeit auf 1 Sekunde bei der kleinsten Blende (22). Daher sind diese Aufnahmen selbstverständlich mit Stativ gemacht.

Schärfentiefe und Brennweite

Ein weiterer wichtiger Faktor, der die Schärfentiefe beeinflusst, ist die Brennweite des Objektivs. Um dies zu zeigen, habe ich den gleichen Rosenstrauß mit einer Brennweite von 100mm abgelichtet:

Blende 5.6, 11 und 22 bei 100mm Brennweite

Vergleicht man diese Fotos, die mit 100mm Brennweite aufgenommen wurden, mit der vorangegangenen Serie, deren Brennweite 55mm betrug, so stellt man leicht fest, dass die Verlängerung der Brennweite zu einer geringeren Schärfentiefe führt. Mit einer längeren Brennweite (Teleobjektiv) ist es also bei möglichst offener Blende ganz einfach möglich, ein scharfes Motiv vor einem unscharfen Hintergrund abzubilden. Will man dagegen eine größere Schärfentiefe, muss man im Telebereich stärker abblenden, was aufgrund der dann längeren Verschlusszeiten nicht immer ganz einfach ist, sondern leicht zu Verwacklungen führen kann.

Typische Portrait-BrennweiteDie geringere Schärfentiefe bei längerer Brennweite ist übrigens ein Grund dafür, warum sich leichte Tele-Objektive im Bereich von ca. 80 bis 135mm Brennweite sehr gut für Portrait-Aufnahmen eignen. Denn bei Portraits und Portrait-Schnappschüssen macht sich der ‚Trick‘ mit dem verschwommenen Hintergrund meist recht gut, wie auch das Foto ‚Kleiner Italiener‘ aus meiner Fotogalerie belegt.

Mit Blende und Brennweite haben wir nun 2 der 3 Faktoren betrachtet, die die Schärfentiefe eines Fotos maßgeblich beeinflussen. Einer bleibt noch übrig, die Entfernung. Bevor wir dazu kommen, möchte ich jedoch noch kurz auf einen in diesem Zusammenhang wichtigen Begriff zu sprechen kommen:

Der Abbildungsmaßstab

Maßstäbe kennen wir z. B. von Plänen und Landkarten. Während ganz Europa in dem winzigen Maßstab von 1:16.000.000 (1 zu 16 Millionen) auf eine Schulatlas-Doppelseite passt, braucht die Zeichnung der heimischen Küche vielleicht einen Maßstab von 1:25. Das Uhrwerk einer Armbanduhr wird man vielleicht in dem großen Maßstab von 5:1 auf einer technischen Zeichnung darstellen. Kleine Maßstäbe stellen also Gegenstände kleiner dar als größere Maßstäbe. 1:100.000 ist ein kleinerer Maßstab als 1:10, der wiederum kleiner ist als z. B. 1:1 oder gar 2:1. Soviel erst einmal zu den Begriffen „größer“ und „kleiner“ bei Maßstäben, die (ähnlich wie bei den Blendenzahlen) manchmal verwechselt werden.

In der Fotografie wird häufig vom „Abbildungsmaßstab“ gesprochen – insbesondere im Zusammenhang mit der Schärfentiefe und dem Fotografieren im Nahbereich (Makrofotografie). Daher möchte ich an dieser Stelle erläutern, was mit dem Abbildungsmaßstab gemeint ist:

Wenn ich eine 1 cm große Fliege so nah fotografiere, dass sie auch auf dem Film bzw. Bildsensor der Kamera in einer Größe von 1 cm abgebildet wird, spricht man von einem Abbildungsmaßstab von 1:1. Es geht also um die Abbildung in der Kamera und nicht etwa um eine spätere Vergrößerung. Wenn ich also von der Fliegen-Nahaufnahme später einen Abzug bestelle, ist sie natürlich viel größer als 1:1, denn Abzüge aus dem Fotolabor (oder auch Ausdrucke am PC) sind ja Vergrößerungen des Negativs (bzw. der vom Bildsensor aufgezeichneten winzigen Pixel). Für einen Abbildungsmaßstab von 1:1 braucht man schon eine etwas speziellere Ausrüstung; entweder ein Makroobjektiv, einen Retro-Adapter, Zwischenringe, Nahlinsen, etc. Mehr dazu vielleicht später in einer anderen Lektion.

Wenn ich eine 4cm große Rosenblüte so fotografiere, dass sie auf dem (15mm breiten) Bildsensor etwa 1cm breit erscheint, beträgt der Abbildungsmaßstab 1:4 – die Rose ist also 4fach verkleinert. Diese Werte, die vielleicht in etwa den oben gezeigten Rosenfotos entsprechen, erreicht man z.B. mit dem „Kit-Objektiv“ (18-55) der Canon EOS 20D (und anderer) problemlos, also auch ohne zusätzliche Makro-Ausrüstung.

Wenn ich einen Brunnen von vielleicht 1 Meter Durchmesser so abbilde, dass er auf dem Chip eine Breite von 5 Millimetern einnimmt, beträgt der Abbildungsmaßstab 1:200, er ist also 200fach verkleinert in der Kamera abgelichtet worden.

Natürlich kann ich auch versuchen, die Fliege zu fotografieren, während sie auf dem Brunnen sitzt. Sollte ich aber nicht näher rangehen, wird man sie kaum erkennen, denn der Abbildungsmaßstab bei der Brunnen-Entfernung beträgt ja 1:200, die Fliege ist also auf dem Chip 1/200stel Zentimeter, also 0,05mm groß. Wie man an diesem (etwas unsinnigen) Beispiel erkennt, ist der Abbildungsmaßstab eines Motivs abhängig von dessen Entfernung zur Kamera (und nicht von der Größe des Objekts, wie manchmal behauptet wird). Allerdings wird man als Fotograf wohl automatisch einen Abbildungsmaßstab wählen, der bei der Größe des Motivs eine sinnvolle Darstellungsgröße ergibt.

Manchmal wird der Abbildungsmaßstab nicht als Verhältnis „1 zu X“ angegeben, sondern als Faktor. Beispielsweise habe ich für mein Kit-Objektiv per Google erfahren: „Abbildungsmaßstab 0,28-fach. Kleinstes Objektfeld 54 x 81 mm“. Eine 4cm-Rose kann also maximal (0,28×4) 1,12cm groß auf dem Bildsensor abgebildet werden. Der sichtbare Gesamt-Bildausschnitt beträgt dann 54 mal 81 Millimeter. Wenn ich versuche, ein kleineres Objekt formatfüllend aufzunehmen, wird es sich nicht fokussieren lassen, weil ich für dieses Motiv näher ran müsste, als das Objektiv scharfstellen kann.

Wer die Faktor-Angaben (unter 1,0) in Verhältnis-Angaben umrechnen will, muss einfach einen Bruch draus machen. Ein Abbildungsmaßstab „0,25-fach“ ist also das gleiche wie „1:4“.

Schärfentiefe und Entfernung

Die Entfernung des Motivs beeinflusst ganz wesentlich, wie groß die Schärfentiefe ist. Wenn das Objektiv auf ein sehr nahes Motiv scharfgestellt ist, wird die Schärfentiefe wesentlich kleiner. Dies ist eines der Hauptprobleme bei der Makrofotografie.

Um sichtbar zu machen, wie sich die Schärfentiefe bei gleicher Brennweite und Blende nur durch die Scharfstell-Entfernung verändert, schauen wir uns noch einmal die ersten Rosen-Fotos an (die ich hier noch einmal zeige, um lästiges Zurückscrollen zu ersparen), die mit 55mm Brennweite aufgenommen wurden. Um eine Rose in dieser Größe zu fotografieren, ist die Kamera schon recht nahe an dem Blumenstrauß. Mit anderen Worten: Die Rose wird in einem großen Abbildungsmaßstab auf den Film (bzw. den Bildsensor) aufgenommen.

Im Gegensatz dazu zeigt die danach folgende Reihe Fotos einige Bilder, bei denen auf ein weiter entferntes Motiv scharfgestellt wurde – auf den Brunnen im Kreuzgang des Bonner Münsters. Das gleiche Objektiv, die gleiche Brennweite (55mm) und die gleichen Blenden-Einstellungen. Aber eine größere Entfernungs-Einstellung, und daraus folgend ein kleinerer Abbildungsmaßstab des Brunnens:

Rosen, Blende 5.6, 11 und 22

Kreuzgang, Blende 5.6, 11 und 22

Es zeigt sich, dass die Veränderung der Blende bei den Brunnen-Fotos bei weitem nicht so starke Auswirkungen auf die Schärfentiefe hat wie bei den Rosen-Fotos. Selbst bei offener Blende (5,6) ist der Bogen im Vordergrund nur leicht unscharf, und die Wand im Hintergrund liegt noch im Bereich der Schärfentiefe. Dabei ist die Wand doch viel weiter von der Scharfstellebene (Brunnen) entfernt, als dies die Schleierkraut-Blüten von der Rose sind. Wie man sieht, beträgt also bei gleicher Brennweite und Blende die Schärfentiefe im Nahbereich nur wenige Zentimeter, während sie bei entfernteren Objekten viele Meter einschließt.

Die Schärfentiefe-Skala

Canon AE-1
Canon AE-1

Nun drängt sich die Frage auf, wie man als Fotograf denn wissen kann, von wo bis wo die Schärfentiefe reicht, wenn diese doch von so vielen verschiedenen Faktoren abhängig ist – von der Blende, der Brennweite und der Fokussier-Entfernung. Im Sucher der Spiegelreflexkamera kann man den Bereich der Schärfentiefe ja auch nicht so einfach sehen, da dieser vor dem Auslösen meist das Sucherbild bei Offenblende zeigt. Erst mit dem Drücken des Auslösers wird dann auf die eingestellte Blende abgeblendet, aber das sieht man ja dann nicht mehr.

Hierzu haben sich die Kamera-Entwickler schon vor längerer Zeit etwas sehr praktisches einfallen lassen: Eine Skala am Objektiv, die die fokussierte Entfernung anzeigt, aber auch die zu erwartende Schärfentiefe bei verschiedenen Blenden. Leider ist diese praktische Skala heutzutage an vielen Autofokus-Objektiven gar nicht mehr vorhanden. Daher zeige ich sie Euch am Normalobjektiv der abgebildeten Canon AE-1.

Schärfentiefe-Skala
Schärfetiefe-Skala

Wie man an der Zahl über dem orangefarbenen Strich sehen kann, ist das Objektiv auf eine Entfernung von 5 Metern fokussiert. Natürlich sollte man nicht mit dem Maßband fokussieren oder gar die Entfernung nur schätzen, sondern die Kamera hat ja einen Schnittbildindikator, um präzise auf das Motiv scharf zu stellen (siehe Manuelle Scharfstellung in Lektion 4).

Rechts und links des Ablese-Striches für die Fokussier-Entfernung sieht man einige Zahlen symmetrisch um den orangefarbenen Strich angeordnet. Es sind die schon bekannten Blendenzahlen 4, 8, 11, 16 und 22. Sie deuten an, wie weit bei der jeweiligen Blende die Schärfentiefe geht. Bei der derzeit am Objektiv eingestellten Blende 4 reicht die Schärfentiefe demnach nur von ca. 4,5 Meter bis ca. 7 Meter. Ein Abblenden auf Blende 8 würde den Schärfentiefe-Bereich ausdehnen von ca. 3,5m bis 10m. Und falls die Situation es zulässt, auf Blende 16 oder 22 abzublenden, reicht die Schärfentiefe bis unendlich, auch wenn nach wie vor auf 5 Meter fokussiert ist. Blende 16 würde alles ab einer Entfernung von ca. 2,70m scharf abbilden, Blende 22 sogar schon ab ca. 2,20m.

Das Ablesen einer solchen Schärfentiefe-Skala ist also ganz einfach. Auch an manchen Zoom-Objektiven gibt es solche Skalen. Da sich die Schärfentiefe jedoch mit zunehmender Brennweite verringert, sind für die verschiedenen Blendenzahlen Kurvenpaare auf dem Objektiv angebracht, die die Schärfentiefe bei der jeweils eingestellten Brennweite anzeigen. Bei Auszug des Zoom-Objektivs, also Einstellen einer höheren Brennweite, laufen die Kurvenpaare zur Mitte hin zusammen.

Lage der Schärfentiefe

Zaun mit geringer SchärfentiefeWenn wir uns die im vorigen Abschnitt gezeigte Schärfentiefe-Skala genauer anschauen, stellen wir fest, dass die Verteilung der Schärfentiefe vor und hinter dem fokussierten Objekt nicht symmetrisch ist. Das Objektiv ist auf 5 Meter fokussiert, und wie die Skala zeigt, würde beispielsweise bei Blende 11 alles ab ca. 3 Metern scharf abgebildet. Die Schärfentiefe reicht also in diesem Falle ungefähr 2 Meter in Richtung Vordergrund. Gleichzeitig geht sie bis deutlich über 10m Entfernung, also über 5m hinter die Scharfstellebene.

Als Faustformel hat sich daher eingebürgert, dass etwa 2/3 der Schärfentiefe hinter dem Fokussierpunkt liegen, und etwa 1/3 davor. Dies ist aber nur ein sehr grober Anhaltspunkt bei ’normalen‘ Fotografierentfernungen, und spätestens dann, wenn die Schärfentiefe bis Unendlich reicht, kann das mit dem Drittel überhaupt nicht mehr hinkommen, denn was ist schon ein Drittel der Unendlichkeit? Eine Frage für Philosophen, aber nicht für Fotografen. :-)

Im Makrobereich kehrt es sich übrigens um. Bei Abbildungsmaßstäben über 1:1 ist der Bereich der Schärfentiefe vor der Scharfstellebene größer als dahinter. Hab ich jedenfalls irgendwo gelesen – ausprobiert habe ich das noch nicht…

Die Abblendtaste

Abblendtaste der Canon AE-1Um vor der Aufnahme im Spiegelreflex-Sucher die Ausdehnung der Schärfentiefe überprüfen zu können, haben viele Kameras eine sogenannte „Abblendtaste“. Wird sie betätigt, verringert sich die Blende im Objektiv auf den eingestellten Blendenwert. Dadurch wird das Sucherbild zwar dunkler, aber man sieht dafür den Schärfeeindruck der späteren Aufnahme, so dass man die Schärfentiefe besser bestimmen kann. Hat man eine kleine Blende (hohe Blendenzahl) wie z.B. 16 oder 22 eingestellt, dann verdunkelt sich das Sucherbild natürlich stärker als bei weiter geöffneten Blenden.

Unschärfekreise (Zerstreuungskreise)

Natürlich sind die Grenzen der Schärfentiefe nach vorne und nach hinten keine festen Linien, zwischen denen alles gleich scharf ist, während direkt davor und dahinter mit einem Schlag alles unscharf wird. Vielmehr ist es ein fließender Übergang. Je weiter ein Motiv von der eingestellten Schärfeebene entfernt ist, um so unschärfer wird es. Nur genau auf der Schärfeebene ist ein Punkt des Motivs auch wirklich als Punkt abgebildet. Alles, was ein wenig davor oder dahinter liegt, wird etwas unscharf abgebildet, also nicht als Punkt, sondern als winzig kleines Scheibchen. Bis zu einer gewissen Größe erscheinen diese „Unschärfekreise“ (auch „Zerstreuungskreise“ genannt) dem menschlichen Auge jedoch noch als scharfe Punkte, sofern man einen ’normalen‘ Betrachtungsabstand zum Foto hat, also nicht mit einer Lupe über dem Foto hängt.

Nun hat man sich bei verschiedenen Kameratypen darauf geeinigt, wie groß diese Zerstreuungskreise maximal sein dürfen, um noch als ’scharf‘ durchzugehen. Für Kleinbildfilm-Kameras beträgt dieser Wert meist 0,03 mm. Alles, was mit Unschärfekreisen von maximal drei hundertstel Millimetern auf dem Dia oder Negativ abgelichtet wurde, erscheint auch in der Vergrößerung (bei einem Betrachtungsabstand, der die Erfassung des ganzen Fotos ermöglicht) noch als scharfe Wiedergabe – jedenfalls für menschliche Augen. Adler mögen da anders drüber denken…

Macht man nun von einem solchen Negativ oder Dia eine Ausschnittsvergrößerung (auf die gleiche Größe wie das Gesamtfoto) und betrachtet diese dann ebenfalls im ‚idealen‘ Betrachtungsabstand, dann sind auch die Unschärfekreise natürlich stärker vergrößert worden, so dass nun auch Unschärfekreise von 0,03 mm eventuell schon unscharf erscheinen. Das, was also bei Betrachtung des Gesamtfotos noch innerhalb der Schärfentiefe-Zone lag (an deren Rand), erscheint nun bei einer Betrachtung der Ausschnittsvergrößerung nicht mehr scharf. Nur Unschärfekreise, die deutlich kleiner sind als 0,03 mm werden noch scharf abgebildet. Daher sind die Schärfentiefe-Skalen, die weiter oben besprochen wurden, auch nur für Aufnahmen im Kleinbildfilm-Format zutreffend, von denen keine Ausschnittsvergrößerungen gemacht werden. Hilfreich für eine grobe Abschätzung der Schärfentiefe sind sie aber dennoch.

Crop-Faktor und Schärfentiefe

Der in der Lektion über Brennweite erläuterte Crop-Faktor digitaler Spiegelreflexkameras führt ja bekanntlich zu einer angeblichen „Brennweiten-Verlängerung“. Ein 50mm-Objektiv erzeugt an einer DSLR mit Crop-Faktor 1,6 einen Bildausschnitt, der dem eines 80mm-Objektivs an einer Kleinbild-SLR entspricht. Daher kann man sich fragen: Wie verhält es sich mit der Schärfentiefe bei Fotos mit Digitalkameras, deren Bildsensor kleiner als das Negativformat ist? Ändert sie sich, oder nicht? Und welche Auswirkungen hat dies?

Wie wir gesehen haben, hängt die Schärfentiefe zunächst einmal überwiegend von Eigenschaften des Objektivs ab: Brennweite, Blende und Fokussier-Entfernung. Die Kamera selbst hat darauf nur indirekten Einfluss. Den Lichtstrahlen im Objektiv ist es sozusagen ‚egal‘, ob sie dahinter auf einen Film oder einen Bildsensor fallen, und wie groß der ist.

Allerdings spielt die Frage der Unschärfekreise nun eine wichtige Rolle. Denn genauso, wie eine Ausschnittsvergrößerung den Wert des maximal ‚zulässigen‘ Zerstreuungskreis-Durchmessers verändert, tut dies der Crop-Faktor ebenso. Auf der Brennweiten-Seite wurde ja bereits anschaulich gemacht, dass der Crop-Faktor ja im Prinzip nichts anderes ist als eine Ausschnittsvergrößerung.

Für digitale Spiegelreflexkameras wie z.B. meine EOS 20D (und viele andere Kameras mit einem Chip im APS-C-Format) wird die Größe der Unschärfekreise mit maximal 0,019 mm angegeben. Dies ist ziemlich genau der Wert, wenn man die 0,030 mm des Kleinbildfilms durch den Cropfaktor 1,6 teilt. Dies sollte man im Sinn behalten, wenn man tatsächlich Nah- und Ferngrenze der Schärfentiefe genau bestimmen will. Die passenden Formeln und einige anschauliche Abbildungen gibt es hierzu beispielsweise bei Wikipedia.

Wem es aber in erster Linie darum geht, die Schärfentiefe ‚kreativ‘ zu nutzen, um sein Motiv elegant vor einem unscharfen Hintergrund ‚freizustellen‘, muss sich nicht mit Formeln und Zerstreuungskreisen plagen. Um einen richtig unscharfen Hintergrund zu erreichen, muss dieser weit genug von der Fokussierebene entfernt sein, und die Brennweite muss ausreichend lang sein. Denn aus dem bisher gesagten folgt, dass ein 50mm-Objektiv an der digitalen Spiegelreflexkamera zwar den Bildausschnitt eines 80mm-Kleinbildfotos widergibt, dass die Schärfentiefe aber nach wie vor einem 50mm-Objektiv ähnelt – speziell, wenn es um den Freistellungs-Effekt geht.

Beispiel: APS-C-Format als Ausschnitt aus KleinbildformatDie Schärfentiefe ist hauptsächlich von der ECHTEN Brennweite abhängig und wird durch den „Verlängerungsfaktor“ nur indirekt beeinflusst. Der Cropfaktor schneidet bekanntlich sozusagen nur die Ränder ab, macht aber KEINE längere Brennweite. Lediglich die Tatsache, dass man aufgrund der ‚abgeschnittenen Ränder‘ für ein gleich großes Foto stärker vergrößern muss, verschiebt ein wenig die Grenzen zwischen scharfer und unscharfer Wahrnehmung. Portraitfotografen wird es vermutlich nicht erfreuen, dass die Schärfentiefe eines 50mm-Objektivs an der Crop-Kamera trotz gleichem Bildausschnitt deutlich größer ist als die eines 80mm-Objektivs an der Kleinbildkamera. Denn sie benötigen ja die geringere Schärfentiefe einer längeren Brennweite, um das Gesicht vor dem unscharfen Hintergrund freizustellen. Dazu brauchen sie nach wie vor die längere Brennweite. Damit aber die Köppe nach wie vor auf’s Bild passen, müssen sie nun mit ihrer Kamera ein Stück weiter weg rücken. Hoffentlich ist das Studio groß genug, sonst stehen sie evtl. ‚mit dem Rücken zur Wand‘. :-)

Nahaufnahme PassionsblumeIm Nah- und Makrobereich, wo die sehr geringe Schärfentiefe ohnehin meist das Hauptproblem ist, bringt der kleinere Chip jedoch den Vorteil größerer Schärfentiefe bei gleichem Bildausschnitt. Hier haben digitale Sucherkameras eventuell sogar noch größere Vorteile, denn sie haben einen wesentlich kleineren Chip und verwenden daher Objektive mit sehr kurzen Brennweiten, beispielsweise 6,5-19,5mm (auch wenn evtl. 35-105mm draufsteht, weil es auf Kleinbildformat umgerechnet wurde). Das gezeigte Foto einer Passionsblume wurde mit einer digitalen Sucherkamera, deren Brennweite 6,5 bis 19,5 mm beträgt, aus freier Hand (im ‚Makro-Modus‘) fotografiert.

Nachdem nun die Grundlagen zur richtigen Belichtung und zur kreativen Beeinflussung von Verschlusszeit und Blende alle behandelt wurden, wird es nun Zeit, noch einen weiteren wichtigen Aspekt der Belichtungssteuerung anszusprechen: Die Filmempfindlichkeit, um die es in Lektion 7 geht.

Alles klein, auch die Schärfentiefe: Miniatur-Wunderland Hamburg